
pyramid𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 0.2

Scott Torborg

March 01, 2014

Contents

i

ii

pyramid𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2

Scott Torborg - Cart Logic

Form rendering and validation for Pyramid. Doesn’t render HTML itself, so you have full control over form markup.

Heavily inspired by the pyramid_simpleform package, rewritten to work with WebHelpers2 and Python 3 and
fix some issues with the original.

Contents 1

http://www.cartlogic.com

pyramid𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2

2 Contents

CHAPTER 1

Contents

1.1 Quick Start

1.1.1 Install

Install with pip:

$ pip install pyramid_uniform

1.1.2 Use in a Pyramid App

No config.include() directive or setting modifications are required to use pyramid_uniform. Instead, two
primary classes are used directly: Form and FormRenderer.

You can use Form alone to validate and process a form, with a FormEncode Schema.:

from formencode import Schema, validators
from pyramid_uniform import Form

class MySchema(Schema):
name = validators.String()
size = validators.Int()
published = validators.Bool()

def myview(request):
obj = ...

Initialize the form
form = Form(request, MySchema)

Check for schema validity.
if form.validate():

Update the attributes of obj based on validated form fields.
form.bind(obj)

A common pattern is to use the same view (or handler action) to show a form and process the result. To do this, use a
FormRenderer class to wrap the Form instance for presentation.:

3

pyramid𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2

from formencode import Schema
from pyramid_uniform import Form, FormRenderer

class MySchema(Schema):
name = validators.String()
size = validators.Int()
published = validators.Bool()

def myview(request):
obj = get_thing(request)

Initialize the form
form = Form(request, MySchema)

Check for schema validity.
if form.validate():

Update the attributes of obj based on validated form fields.
form.bind(obj)
return HTTPFound(...)

Form data is not present or not valid, so show the form.
renderer = FormRenderer(form)
return {’renderer’: renderer, ’obj’: obj}

To use renderer in a template, call methods on it to generate HTML form tags:

<h1>Edit ${obj}</h1>

${renderer.begin()}
${renderer.text(’name’, obj.name)}
${renderer.select(’size’, obj.size, range(10))}
${renderer.checkbox(’published’, checked=obj.published)}

${renderer.end()}

Extensive customization of the validation and rendering behavior is possible. For details, see the API documentation.

1.2 API Reference

class pyramid_uniform.Form(request, schema, method=’POST’)

assert_valid(**kw)

bind(obj)

errors_for(field)

is_error(field)

method_allowed
Is the method that was used to submit this form allowed?.

If this form doesn’t have a request method set (i.e., if it was explicitly set to None), any method is valid.
Otherwise, the method of the form submission must match the method required by this form.

4 Chapter 1. Contents

pyramid𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2

validate(skip_csrf=False, assert_valid=False)
Validate a form submission.

When assert_valid is False (the default), a bool will be returned to indicate whether the form was
valid. (Note: this isn’t strictly true–a missing or bad CSRF token will result in a immediate 400 Bad
Request response).

When assert_valid is True, certain conditions will be assert‘‘ed. When an assertion
fails, the resulting ‘‘AssertionError will cause an internal server error, which will in
turn cause an error email to be sent out.

validate_csrf(params=None)

exception pyramid_uniform.FormError(*args, **kw)
Superclass for form-related errors.

exception pyramid_uniform.FormInvalid(*args, **kw)
Raised when form data is used but the form is not valid.

message = ‘Form is invalid’

exception pyramid_uniform.FormNotValidatedError(*args, **kw)
Raised when form data is used before form has been validated: for example, when form.bind() is called.

message = ‘Form has not been validated; call validate() first’

class pyramid_uniform.FormRenderer(form, csrf_field=’_authentication_token’, id_prefix=None)

begin(url=None, **attrs)

csrf(name=None)

csrf_token(name=None)

end()

class pyramid_uniform.Renderer(data, errors, id_prefix=None)

checkbox(name, value=‘1’, checked=False, label=None, id=None, **attrs)

errorlist(name)

errors_for(name)

file(name, value=None, id=None, **attrs)

hidden(name, value=None, id=None, **attrs)

is_error(name)

password(name, value=None, id=None, **attrs)

radio(name, value=None, checked=False, label=None, **attrs)

select(name, selected_values, options, id=None, **attrs)

submit(name, value=None, id=None, **attrs)

text(name, value=None, id=None, **attrs)

textarea(name, content=’‘, id=None, **attrs)

value(name, default=None)

class pyramid_uniform.State(request)
A relatively simple state object for FormEncode to use, with a reference to the request being validated.

1.2. API Reference 5

pyramid𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2

1.3 Contributing

Patches and suggestions are strongly encouraged! GitHub pull requests are preferred, but other mechanisms of feed-
back are welcome.

pyramid_uniform has a comprehensive test suite with 100% line and branch coverage, as reported by the excellent
coverage module. To run the tests, simply run in the top level of the repo:

$ tox

This will also ensure that the Sphinx documentation builds correctly, and that there are no PEP8 or Pyflakes warnings
in the codebase.

Any pull requests should preserve all of these things.

6 Chapter 1. Contents

http://www.python.org/dev/peps/pep-0008/
http://pypi.python.org/pypi/pyflakes

CHAPTER 2

Indices and Tables

• genindex

• modindex

7

pyramid𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2

8 Chapter 2. Indices and Tables

Python Module Index

p
pyramid_uniform, ??

9

