pyramid,ni formDocumentation
Release 0.2

Scott Torborg

March 01, 2014

Contents

1 Contents 3
1.1 Quick Start e e e e e 3
1.2 RECIPES . . v v o ot e e e e e e e e e e e e e e e e e e 4
1.3 0 LoggIng o o i e e e e e e e e e e e 5
1.4 APIReference e e e 5
1.5 Contributing e e e e 7
2 Indices and Tables 9

pyramid, niformDocumentation, Release0.2

Scott Torborg - Cart Logic
Form rendering and validation for Pyramid. Doesn’t render HTML itself, so you have full control over form markup.

Heavily inspired by the pyramid_simpleform package, rewritten to work with WebHelpers2 and Python 3 and
fix some issues with the original.

Contents 1

http://www.cartlogic.com

pyramid, niformDocumentation, Release(.2

2 Contents

CHAPTER 1

Contents

1.1 Quick Start

1.1.1 Install

Install with pip:

$ pip install pyramid_uniform

1.1.2 Use in a Pyramid App

No config.include () directive or setting modifications are required to use pyramid_uniform. Instead, two
primary classes are used directly: Form and FormRenderer.

You can use Form alone to validate and process a form, with a FormEncode Schema.:

from formencode import Schema, validators
from pyramid_uniform import Form

class MySchema (Schema) :
name = validators.String/()
size = validators.Int ()
published = validators.Bool ()

def myview (request) :
obj =

Initialize the form
form = Form(request, MySchema)

Check for schema validity.
if form.validate () :

Update the attributes of obj based on validated form fields.
form.bind (obj)

A common pattern is to use the same view (or handler action) to show a form and process the result. To do this, use a
FormRenderer class to wrap the Form instance for presentation.:

pyramid, niformDocumentation, Release(.2

from formencode import Schema
from pyramid _uniform import Form, FormRenderer

class MySchema (Schema) :
name = validators.String()
size = validators.Int ()
published = validators.Bool ()

def myview (request) :
obj = get_thing(request)

Initialize the form
form = Form(request, MySchema)

Check for schema validity.
if form.validate():

Update the attributes of obj based on validated form fields.
form.bind (obj)
return HTTPFound(...)

Form data is not present or not valid, so show the form.
renderer = FormRenderer (form)
return {’renderer’: renderer, ’'obj’: obij}

To use renderer in a template, call methods on it to generate HTML form tags:

<hl>Edit ${obj}</hl>

${renderer.begin() }
${renderer.text (' name’, obj.name) }
${renderer.select ('size’, obj.size, range(10))}
${renderer.checkbox ('published’, checked=obj.published)}
S{renderer.end ()}

Extensive customization of the validation and rendering behavior is possible. For details, see the API documentation.

1.2 Recipes

1.2.1 Validating Non-User Input
It’s often important to validate input that is not entered directly by a user, but is still untrusted. For example, a client
process running on a remote machine may construct a URL algorithmically.

In this case, we don’t want to deal with the full ‘plumbing’ of form error rendering, we just want to make sure the
input is safe. pyramid_uniform.Form.assert_valid () can be used for this purpose.

from pyramid uniform import Form

Form (request, MySchema) .assert_valid()

4 Chapter 1. Contents

pyramid, niformDocumentation, Release0.2

1.2.2 Skipping CSRF Protection

CSREF protection is always on by default. To skip it, pass skip_csrf=True to any relevant methods.

form = Form(request, MySchema)
if form.validate (skip_csrf=True) :
pass

1.3 Logging

You may wish to maintain a separate log of form validation errors. Built-in support is included using the
pyramid_uniform.validate logging key.

That logger will emit messages like:

Validation failure on http://example.com/some-url from 1.2.3.4 [Mozilla 5.0]
Params:

{’name’ : ’Something valid’, ’'integer_value’: ’"twelve’}

Errors:

{’integer_value’: ’'Must contain an integer’}

Loggers are propagated, so you can use pyramid_uniform directly.

1.4 API Reference

1.4.1 Forms

class pyramid_uniform.State (request)
A relatively simple state object for the schema being validated to use, with a reference to the request being
validated.

class pyramid_uniform.Form (request, schema, method="POST’, skip_csrf=False)
Represents a set of fields (GET or POST parameters) to be validated using a FormEncode schema.

Parameters
* request (WebOb .Request) — The web request containing data to be validated
* schema (FormEncode . Schema) — The schema to validate against
* method (str) — HTTP request method that this form expects: GET or POST

assert_wvalid (**kw)
Assert that this form is valid, the request method is appropriate, and the CSRF check passes (unless it is
explicitly skipped).

bind (obj)
Bind the data from this form to an object: that is, try to set attributes on the client corresponding to the
keys present in the validated data. The object can be a template object, SQLAlchemy object, etc.

If any value in the data is a list or another dictionary, recurse with that key.
Private attributes, which is anything that is prefixed with _, will be skipped.
Once done, return the object.

data
Once the form has been validated, contains the results of that validation as a dict.

1.3. Logging 5

pyramid, niformDocumentation, Release(.2

Raises FormNotValidated if the form has not yet been validated

errors_for (field)
Return a list of errors for the given field.

is_error (field)
Check if the given field has any validation errors.

method_allowed
Is the method that was used to submit this form allowed?

If this form doesn’t have a request method set (i.e., if it was explicitly set to None), any method is valid.
Otherwise, the method of the form submission must match the method required by this form.

validate (skip_csrf=False, assert_valid=False)
Validate a form submission.

When assert_validis False (the default), a bool will be returned to indicate whether the form was
valid. (Note: this isn’t strictly true—a missing or bad CSRF token will result in a immediate 400 Bad
Request response).

When assert_valid is True, certain conditions will be asserted. When an assertion fails, an
AssertionError will be raised.

Parameters
* skip_csrf (bool) — if True, bypass the CSRF check
« assert_valid (bool) — if True, assert validity instead of returning status

validate_csrf (params=None)
Validate that the CSRF token is correct.

1.4.2 Rendering

class pyramid_uniform.Renderer (data, errors, name_prefix="", id_prefix="")

checkbox (name, value="‘1’, checked=False, label=None, id=<class ‘webhelpers2.misc.NotGiven’>,
*kattrs)
Return a checkbox tag.
errorlist (name)
Return a list of errors for the given field as a ul tag.

errors_for (name)
Return a list of errors for the given field.

file (name, value=None, id=<class ‘webhelpers2.misc.NotGiven’>, **attrs)
Return a £ile input tag.

hidden (name, value=None, id=<class ‘webhelpers2.misc.NotGiven’>, **attrs)
Return a hidden input tag.

is_error (name)
Check if the given field has any validation errors.

password (name, value=None, id=<class ‘webhelpers2.misc.NotGiven’>, **attrs)
Return a password input tag.

radio (name, value=None, checked=False, label=None, **attrs)
Return a radio button tag.

6 Chapter 1. Contents

pyramid, niformDocumentation, Release0.2

select (name, selected_values, options, id=<class ‘webhelpers2.misc.NotGiven’>, **attrs)
Return a select tag.

submit (name=None, value=None, id=<class ‘webhelpers2.misc.NotGiven’>, **attrs)
Return a submit button tag.

text (name, value=None, id=<class ‘webhelpers2.misc.NotGiven’>, **attrs)
Return a text input tag.

textarea (name, content="", id=<class ‘webhelpers2.misc.NotGiven’>, **attrs)
Return a textarea tag.

value (name, default=None)
Return the value for the given field as supplied to the form.

class pyramid_uniform.FormRenderer (form, csrf_field="_authentication_token’, name_prefix="",

id_prefix="")
Bases: pyramid_uniform.Renderer

Wraps a form to provide HTML rendering capability.

begin (url=None, skip_csrf=False, **attrs)
Return a form opening tag.

csrf (name=None)
Return a bare hidden input field containing the CSRF token and param name.

csrf_token (name=None)
Return a hidden field containing the CSRF token, wrapped in an invisible div, so that it is valid HTML
regardless of context.

end ()
Return a form closing tag.

1.4.3 Exceptions

exception pyramid_uniform.FormError (*args, **kw)
Bases: exceptions.Exception
Superclass for form-related errors.

exception pyramid_uniform.FormInvalid (*args, **kw)
Bases: pyramid_uniform.FormError

Raised when form data is used but the form is not valid.

exception pyramid_uniform.FormNotValidated (*args, **kw)
Bases: pyramid_uniform.FormError

Raised when form data is used before form has been validated: for example, when Form.bind () is called.

1.5 Contributing

Patches and suggestions are strongly encouraged! GitHub pull requests are preferred, but other mechanisms of feed-
back are welcome.

pyramid_uniformhas a comprehensive test suite with 100% line and branch coverage, as reported by the excellent
coverage module. To run the tests, simply run in the top level of the repo:

1.5. Contributing 7

pyramid, niformDocumentation, Release(.2

$ tox

This will also ensure that the Sphinx documentation builds correctly, and that there are no PEPS or Pyflakes warnings
in the codebase.

Any pull requests should preserve all of these things.

8 Chapter 1. Contents

http://www.python.org/dev/peps/pep-0008/
http://pypi.python.org/pypi/pyflakes

CHAPTER 2

Indices and Tables

* genindex

e modindex

	Contents
	Quick Start
	Recipes
	Logging
	API Reference
	Contributing

	Indices and Tables

